مصادقة السيد العميد

Ministry of Higher Education and Scientific Research Scientific Supervision and Evaluation Authority Department of Quality Assurance and Academic Accreditation Accreditation Department

2024

Academic Program Description

University Name: Al-Furat Al-Awsat Technical University College/Institute: Technical Collage of Al-Mussaib Scientific Department: Department of Building and Construction Engineering Technology Academic or Professional Program Name: Bachelor's Degree Final Degree Name: Bachelor of Science in Building and Construction Engineering Technology Study System: Annual Description Preparation Date: File Filling Date: 19/2/2024

Signature: Department Head Name: Dr. Ammar Adel Andulnabe Al-Bakri Date:24 4/ 2024

Signature:

Scientific Assistant Name: Prof. Dr. Nabil Hamid Abdul Majeed Date إ أ. د نبيل حميد عبد المحبد معاون العميد للتنوون العلمية و الدراسات العليا

File Verified By: Quality Assurance and University Performance Department Quality Assurance and University Performance Department Director Name: Dr. Haider Rahman Dawood Date 24/ / 2024 Signature 2

1. Program Vision

To keep pace with modern scientific developments in the undergraduate and postgraduate education program in the future, to guide and develop scientific research, and to employ applicable research capabilities to serve the machinery and equipment sector

2. Program Mission

In line with the mission of Technical Collage of Al-Mussaib, the department is

committed to preparing qualified technical engineers and researchers capable of

contributing to the development of the construction and building sector.

3. Program Objectives

To prepare engineering technicians with qualifications in civil and construction engineering

To prepare scientific cadres capable of keeping pace with scientific developments in civil and construction engineering

To provide students with the basic concepts and principles of management information systems, marketing, finance, and accounting

To provide graduates with the necessary skills to perform all field and laboratory tests (destructive and non-destructive) on all construction materials and soil, read their results, and compare them with standard specifications

To prepare graduates who have the ability to enter the labor market

To work on partnerships with government, private, and community sectors in all their different institutions

4. **Program Accreditation**

null

5. Other External Influences

null

6. Program	Structure			
Category	Number of Courses	Total Credits	Percentage	Notes
Institutional Requirements	43	195		
College Requirements	43	195		
Department Requirements	43	195		
Summer Internship		2 months		For the second and third levels
Other				It follows the Bologna System - semester and final system

*It would be possible to include in the notes whether the course is mandatory or elective

			البرنامج	7. وصف
المعتمدة عما	الساعات	اسم المقرر أو المساق	رمز المقرر أه المساق	المرحلة الدر اسبية
عملي .	لطري		, 3 ,	الل اللي ا
30	60	الميكانيك الهندسي	ATU22011	
45	30	الرسم الهندسي	ATU22012	
30	60	الرياضيات	ATU22013	
30	30	الفيزياء الهندسية	ATU22014	
	15	الحقوق والديمقراطية	ATU22015	
	45	المهارات الإنكليزية المتقدمة	ATU22016	しがい
60	60	المواد الإنشائية	ATU22021	ا ه و سی
60	60	المساحة المستوية	ATU22022	
45	30	الجيولوجيا الهندسية	ATU22023	
15	30	الهندسة الوصفية	ATU22024	
30	15	أساسيات الحاسبة	ATU22025	
	15	اللغة العربية	ATU22026	
60	60	انشاء المباني		
60	60	نقنية الخرسانة (1)		
90	60	المساحة (2)		
60	60	الرياضيات المتقدمة		
60	60	مقاومة المواد		
60	60	ميكانيك المواقع 1-1 - 1 - 1 - 1 - 1 - 1 - 1		الثانية
60	30	لطبيعات الحاسبة (1)		**
	00	لغنية صناعة المؤاد الإنسانية		
	30	اللغة الانكليرية		
		التدريب المنهجي		
	30	جرائم نظام البعث في العراق		
60	60	تحليل وتصميم المنشآت الخرسانية المسلحة (1)		
60	60	تقنية الخرسانة (2)		
90	90	ميكانيك التربة		
60	60	الادارة الهندسية والمكائن الانشائية		5. *** * *
30	60	نظرية المنشآت		الدالده
30	60	التحليل الهندسى		
60	60	هندسة الطرق		
60	30	تطبيقات الحاسبة (2)		
00	30	(-, ; -, -,,		

-	-		
	30	اللغة الانكليزية	
		التدريب المنهجي	
30	60	تحليل وتصميم المنشآت الخرسانية المسلحة (2)	
60	60	تقنية هندسة الأسس	
30	60	تصميم المنشآت الفولاذية	
60	60	التخمين والمواصفات والعقود	
90	90	هندسة البيئة	11. 1. 0.
	60	الآيزو	الرابعة
90	30	الرسم الانشائي	
60	30	تطبيقات الحاسبة (3)	
	30	اللغة الانكليزية	
180		المشروع	

8. Expected Learning Outcomes of t	he Program
Knowledge	
 Upon completion of the program, students are expected to be able to: 1- Recognize the fundamentals of engineering sciences and scientific engineering applications. 2- Differentiate between the various methods employed in civil and construction engineering. 3- Implement, analyze, and interpret data related to civil and construction engineering. 	 4- Utilize all theoretical knowledge acquired from the academic program and apply it to construction projects. 5- Employ modern methods in the design and execution of various civil projects, such as road and bridge projects, dams, concrete structures, and metal structures. 6- Apply engineering laws and theories through the use of modern software applications.
Skills	
 2 .Program-Specific Skill Goals 1- Utilize laboratory equipment. 2- Conduct scientific experiments in civil engineering laboratories. 	
 3. Learning Outcomes Empower students to acquire practical skills Enable students to apply theoretical design concepts to graduation projects. 	3- Knowledge of design principles and rules.
Values	
 3. Learning Outcomes Provide students with a solid foundation in the fundamental principles and engineering practices in the field of design and engineering analysis. Meet the needs and aspirations of individuals and the labor market by aligning technical education with these needs. Empower students to apply theoretical skills in the workplace. 	 Enable students to undertake engineering projects in their area of specialization in accordance with the academic program. Prepare graduates with the ability to engage with the needs of the local community and local industry and support their development. Enable students to complete their studies within the prescribed period according to international standards and then engage in postgraduate studies.

9. Teaching and Learning Strategies

- 1- Lecture-based instruction
- 2- Scientific seminars in the specialization
- 3- Summer training
- 4- Educational field trips and visits to engineering sites

10. Assessment Methods

- 1- Practical exams
- 2- Theoretical exams
- 3- Reports
- 4- Classroom activities
- 5- Community volunteer work

11.Fa	culty				
Faculty	v Membe	ers			
No. of I Mem	No. of Faculty F Members Requ an		Specializ	Rank	
محاضر	ملاك		Specific Requirements/Skills (if any)	Specialization	
	\checkmark		Sanitary and Environmental Engineering	Civil Engineering	Professor
	\checkmark		Sanitary and Environmental Engineering	Civil Engineering	Professor
			Structures	Civil Engineering	Professor
	\checkmark		Geotechnics	Construction Engineering	Professor
			Roads and Bridges Engineering	Construction Engineering	Professor
			Materials Engineering	Materials Engineering	Assistant Professor
	\checkmark		Chemical Engineering	Chemical Engineering	Assistant Professor

\checkmark	Soil Preparation Equipment	Agricultural Engineering	Assistant Professor
\checkmark	Water Resources Engineering	Water Resources Engineering	Assistant Professor
	Applied Mechanics	Mechanical Engineering	Lecturer
	Structures	Civil Engineering	Lecturer
\checkmark	Sanitary and Environmental Engineering	Civil Engineering	Lecturer
\checkmark	Project Management	Civil Engineering	Lecturer
\checkmark	Structures	Civil Engineering	Assistant Lecturer
\checkmark	Surveying Engineering	Surveying Engineering	Assistant Lecturer
\checkmark	Construction Materials	Civil Engineering	Assistant Lecturer
\checkmark	Architectural Engineering	Architectural Engineering	Assistant Lecturer
	Structures	Civil Engineering	Assistant Lecturer
	Construction Materials	Civil Engineering	Assistant Lecturer
	Business Administration	Business Administration	Assistant Lecturer
\checkmark	Applied Mechanics	Mechanical Engineering	Assistant Lecturer

Professional Development

Orientation of New Faculty Members

New faculty members are defined as those who have been newly hired by the university and are within their first year of academic service. A faculty member in their second year is eligible to participate if nominated by the dean **Professional Development for Faculty Members**

The teaching ability of faculty members is developed by involving them in teaching methods courses held at the Skills Development Center, as well as by holding department-level seminars where each faculty member is assigned to prepare a seminar on a scientific topic and present it in the presence of the department's faculty staff. The topic is discussed and the necessary notes are recorded, which are then used to refine the faculty member's personality and assist them in managing discussions, defending and expressing opinions that will help raise the faculty member's scientific level and develop their capabilities. In addition, many department faculty members have participated in courses inside and outside the country in recent years, which have had a positive impact on increasing knowledge and developing skills. Most department faculty members also participate annually in many scientific conferences held by Iraqi universities as researchers or participants.

Professional Development Components

1- Determining the department's needs for faculty members and their specializations is based on its vision and goals.

- 2- There are plans for training programs to develop the skills and abilities of faculty members.
- 3- There are databases of the qualifications and experiences of faculty members.
- 4- Faculty members contribute to the fields that serve the department in their area of specialization
- 5- Determining the faculty member's workload in the department is done according to the instructions.
- 6- The department works to provide research requirements for faculty members
- 7- Providing appropriate conditions and administrative and educational requirements within the department.
- 8- Providing clear and accurate instructions that include the use of modern teaching and learning methods within the department.
- 9- The department grants facilities to faculty members to participate in conferences, development courses, and training workshops

12. Acceptance Criterion

1- Admission Requirements

The Civil Engineering program has two main admission streams: Stream 1: For Graduates of Technical Education Institutions/Technical Institutes

Direct Admission to Second Year:

Graduates of the Civil Engineering Technology Department/Construction and Installations Branch only. These students will be required to take the Engineering Geology course as a regular course and exam.

Admission to First Year:

Graduates of the Civil Engineering Technology Department/Engineering Drawing and Road Construction Branches.

Graduates of the Surveying Department.

Graduates of the Irrigation and Water Projects Operation Department.

Stream 2: For Graduates of Preparatory School (Science Stream)

Admission to First Year: Graduates of the preparatory school (science stream) only.

Stream 3: For Top Graduates from Other Institutes Outside the Technical Education Authority Institutes

Admission to First Year: Top graduates from other institutes outside the Technical Education Authority institutes.

Admission System

Students are admitted through the centralized admission system of the Ministry of Higher Education and Scientific Research in two stages:

Stage 1: First Year

2- Admission Criteria:

Graduates of the preparatory school (science stream).

Top graduates of vocational education in the specializations that can be accepted into the program.

Stage 2: Second Year

Admission Criteria:

The top ten graduates from the technical institutes specified in the program's inputs. Distinguished individuals in the field of work from the specializations specified in the inputs.

13. The most important sources of information about the program

The Official Website of Collage www.tcm.edu.iq Technical Collage of Al-Mussaib

14. Program Development Plan

The department's curriculum is subject to a 20% annual update process, driven by the subject matter instructor. This ongoing revision ensures that the curriculum remains relevant, aligned with industry standards, and incorporates the latest advancements in the field of civil engineering.

			Prog	jram S	Skills (Dutlin	е								
					Required program Learning outcomes										
Year/Level	Course Code	Course Course Name Code	Basic or	Knowledge			Skills			Ethics					
			optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4
First Year	ATU22021	Materials Science for Civil Engineering	Basic		*								*		
	ATU22022	Surveying	Basic		*							*	*	*	
Second Year		Building Construction	Basic		*							*			
		Technology of Construction Materials	Basic		*		*	*				*	*	*	*
Third Year		Construction Management and Construction Equipment:	Basic	*	*	*	*	*	*	*		*	*	*	*
		Highway Engineering	Basic	*	*	*	*	*	*	*		*	*	*	*
Fourth Year		Foundation Engineering	Basic	*	*		*	*	*	*		*	*	*	*
		Estimating, Specifications, and Contracts	Basic												

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

1. Course Name:

Engineering Mechanics

2. Course Code:

ATU22011

3. Semester / Year:

Semester

4. Description Preparation Date:

Theoretical and practical lectures and field trips

5. Available Attendance Forms:

Daily

6. Number of Credit Hours (Total) / Number of Units (Total) 250X10

7. Course administrator's name (mention all, if more than one name) Name: Hayder Saad Oleiwi

Email: hayder.rashid@atu.edu.iq

8. Course Objectives	
Course Objectives	 Teaching the student, the fundamentals of engineering mechar (Static's& Dynamics) in engineering applications, the loads analysis, resultan Equilibrium in 2-D and 3-D, moments and couples . First and second moment of inertia, motion of particles, and theories.
0 Teaching and Learn	ing Stratagian

9. Teaching and Learning Strategies

Strategy	The primary strategy that will be adopted in delivering this module is to encourage
	students' participation in the exercises, while at the same time refining and
	expanding their critical thinking skills. This will be achieved through classes,
	interactive tutorials

10. Course Structure

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
Week 1	3	Force systems, Scalar & vector quantities , Parallelogram law , Triangle	Introduction to mechanics, Force systems, Scalar & vector quantities , Parallelogram	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes

10

		law , Forces & components .	law , Triangle law , Forces & components .		
Week 2	3	Varignon`s theorem , Applications	Moment of a force , Varignon's theorem , Applications	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes
Week 3	3	a force into a force & a couple .	Couples , Resolution of a force into a force & a couple .	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes
Week 4	3	Resultant of parallel force system , Resultant of non- concurrent force system .	Resultant of force systems, Resultant of concurrent force system, Resultant of parallel force system, Resultant of non- concurrent force system.	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes
Week 5	3	Equilibrium of concurrent force system, Equilibrium of parallel force system, Equilibrium of non- concurrent force system.	Equilibrium of force system , Free body diagram , Equilibrium of concurrent force system , Equilibrium of parallel force system , Equilibrium of non- concurrent force system .	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes
Week 6	3	beams, Supports, and loads, Equilibrium of beams.	Types of beams, Supports, and loads, Equilibrium of beams.	Giving lectures	Assignments, oral exams, discussions, direct questions, and short guizzes
Week 7	3	method of Joint , method of section .	Trusses, Analysis of trusses, method of Joint , method of section .	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes
Week 8	3	Analysis of frames (method of members).	Analysis of frames (method of members).	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes
Week 9	3	friction , Angle of friction , Types of friction , Wedges ,Applications.	Friction , Theory of friction , Angle of friction , Types of friction , Wedges ,Applications.	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes
Week 10	3	, Centroids by integration , Centroids of composite areas , Applications.	Centroids of areas & lines , Centroids by integration , Centroids of composite areas , Applications.	Giving lectures	Assignments, oral exams, discussions, direct

Summa assessm	nent	F	inal Exam	3hr		50% (50)		16	All	- #/
Summa	ilive	Midt	егш Ехаш			0% (10) 7 0% (50) 16		1	$LO \pi I$	- # /
	tivo	N / 14	Keport	l 2hr		10% (10) 10% (10)		13 LO #5,		#8 and #10
assessn	nent	Proj	ects / Lab.	-		-	С	Continuous	All	40 cm 1 #10
Forma	ative	As	signments	2		10% (10)		2 and 12	LO #3,	#4 and #6, #7
			Quizzes	Time/Number	We	ight (Marks) 20% (20)	V	Veek Due 5 and 10	R LO #1,	Outcome #2 and #10, #11
11. C	ourse	Eva	luation						~	
Week 15		3			exam	ing for the fin	ial	lectu	res	Short quizzes
Week 14		3	translatic Dynamic in transla	Equilibrium	transl a par Equil transl as a r	ation (Analysis ticle), Dynam ibrium ation (Analysi igid body). ring for the fin	as iic in sis	lectui	res	oral exams, discussions, direct questions, and short quizzes
Week 13		3	Rectiline Rectiline Kinetics	ar translation, ar motion of rectilinear	Recti Recti const Free f	linear translatio linear motion wi ant acceleration falling bodies.	n, th ,	Givi lectur Givi	ing res	Assignments, oral exams, discussions, direct questions, and short quizzes Assignments.
Week 12		3	Principle , Kinema , Motion	s of dynamics tics & kinetics of a particle ,	Prince , Kine , Mot Funda Equat for a p	ples of dynami ematics & kineti ion of a particle amental ions of kineti particle, Effectiv on a particle.	cs cs e, cs ve	Givi lectu	ing res	Assignments, oral exams, discussions, direct questions, and short quizzes
Week 11		3	Moment Polar inertia .	of inertia , moment of	Mom Polar , Rad Trans mome Mom comp Produ Mom respea , M mome lectu	ent of inertia moment of inert lius of gyration fer formula f ent of inertia f osite areas act of inertia wi ct to inclined ax ohr` circle f ent of Givin res inertia.	, tia , or , or , th es or	Givi lectu	ing res	questions, and short quizzes Assignments, oral exams, discussions, direct questions, and short quizzes