Ministry of Higher Education and Scientific Research Scientific Supervision and Evaluation Authority **Department of Quality Assurance and** Academic Accreditation **Accreditation Department**

2024

Academic Program Description

University Name: Al-Furat Al-Awsat Technical University College/Institute: Technical Collage of Al-Mussaib Scientific Department: Department of Machinery and Equipment **Engineering Technology** Academic or Professional Program Name: Bachelor's Degree Final Degree Name: Bachelor of Science in Building and Construction **Engineering Technology** Study System: Annual **Description Preparation Date:** File Filling Date: 19/2/2024

Signature:

Department Head Name: Ass. Prof. Dr. Hani Mizhir Magid Date: $\frac{1}{2024}$

Signature:

Scientific Assistant Name: Prof. Dr. Nabil Hamid Abdul Majeed Date: / / 2024

File Verified By:

Quality Assurance and University Performance Department Quality Assurance and University Performance Department Director

Name: Dr. Haider Rahman Dawood

Signature:

Date: 21 / 4 / 2024

11221 **Dean's Approval**

1. Program Vision

Keeping pace with the latest scientific developments in the undergraduate and graduate education program, guiding scientific research, developing it, and utilizing applicable research capabilities to serve the machinery and equipment sector.

2. Program Mission

Within the framework of the mission of Al-Musayyib Technical College, the department is committed to preparing engineering technicians and researchers capable of contributing to the development of the machinery and equipment sector.

3. Program Objectives

To prepare technical engineering personnel with qualifications in machinery and equipment engineering.

To develop scientific staff capable of keeping up with scientific advancements in mechanical engineering/machinery and equipment engineering.

To learn how to maintain and repair machinery and equipment.

To learn the design of various types of machinery and equipment.

To learn practical applications through laboratory experiments.

To gain practical experience through field observation to enhance theoretical understanding.

4. Program Accreditation

None

5. Other External Influences

None

6. Program S	tructure			
Program Structure	Course Count	Credit Hours	Percentage	Notes *
Institutional Requirements	43	195		
College Requirements	43	195		
Department Requirements	43	195		
Summer Training		Two Months		For Second and Third
Notes				Bologna System - Semester and Final

* May include whether the course is mandatory or elective

7. Progr	am description	l		
Educational level	Course or course code	Name of the course or course	Credi	t hours
	METE1W1	WORK SHOPS		180
	METE1M2	ENGINEERNG MATERIALS	60	60
	METE1E3	ENGINEERING MECHANICS	90	30
	METE1M4	MATHEMATICS/1	90	
The first	METE1E5	ENGINEERING DRAWING		90
	METE1E6	ELECTRICAL TECHNOLOGY	60	60
	METE1C7	COMPUTER APPLICATIONS/1	30	60
	METE1H8	HUMAN RIGHTS AND DEMOCRACY	60	
	METE1E9	ENGLISH/1	30	
	METE2T1	MECANICAL MASHINE	120	60
	METE2S2	STRENGTH OF MATERIALS	60	60
	METE2T3	THERMODYNAMICS	60	60
The second	METE2F4	FLUID MECHANICS	60	60
	METE2M5	MECHANICAL DRAWING	90	
	METE2M6	MATHEMATICS/2		90
	METE2C7	COMPUTER APPLICATIONS/2	60	30
	METE2E8	ENGLISH/2		30
	METE3A1	MACH. & EQUIP.	60	60
		THEORY OF MACH. &		
	METE3T2	VIBRATIONS	60	60
Third	METE3M3	MACHINE DESIGN	90	30
	METE3I4	INTERNAL COMBUSTION ENGINES	60	60
	METE3M5	MANUFACTURING PROCESSES	90	60
	МЕТЕЗН6	HYDRAULIC MACHINES	60	30
	METE3M7	MACHINES ELECTRICITY	60	30
	METE3C8	COMPUTER APPLICATIONS/3	60	30
	METE3C9	ENGLISH/3		30
	METE4A1	MACH. & EQUIP.	60	60
	METE4M2	MAINT. & REPAIRE OF MACH. AND EQUIP.	60	60
	METE4A3	EQUIPMENTS DESIGN	60	90
	METE4M3	ENGINEERING MECHANICAL	60	60
	METE4A5	CONTROL AND MEASURMENTS	60	90
_	METE4R6	RESEARCH PROGECT		180
Fourth	METE4I7	IRRIGATION PUMPS TECH.	30	60
	METE4M8	MACHINERY ECONOMICS	<u> </u>	
	METE4I9	INDUSTRIAL MANAGMENT & PROF. SAFETY	60	
	METE4C10	COMPUTER APPLICATIONS/4	30	60

8. Expected learning outcomes of the pr	rogram
Knowledge	
 Introducing the student to the concepts and principles of machinery and equipment engineering. 2- Introducing the student to the types of engines. Introducing the student to the types of loads, forces, and stresses. Teaching the student engineering designs. Teaching the student how to conduct scientific research. 	- Make the student aware of the importance of engineering machinery and equipment techniques in practical life
Skills	
 Program Specific Skill Objectives: Training the student in various welding techniques. Training the student in metal turning and milling. Training the student in metal forming and casting. 	- General skills and qualifying the student to maintain engines and machines
 3- Learning Outcomes: 1- Empowering the student to acquire practical skills. 2- Empowering the student with theoretical design and its application in graduation projects. 	 Knowledge of the foundations and rules of designs. Explaining the principles of heat exchanges. Explaining the principles of the question and the forces affecting the pressures generated from it.
Values	
 3. Learning Outcomes Analyzing stresses generated in beams from bending and shear. Understanding engineering analysis techniques. Empowering the student to work on electronic control and its integration with mechanical systems. 	 The student can analyze equations. He is able to analyze mathematical operations and transform them into practical applications.

9. Teaching and learning strategies

- 1- Explanation and clarification of lectures.
- 2- Scientific seminars in the specialty.
- 3- Summer training.
- 4- Scientific trips and visits to practical sites related to the specialty.

10. Evaluation methods

- 1- Practical tests
- 2- Theoretical tests
- 3- Reports
- 4- Class activities
- 5- Association volunteer work

11. The teaching staff

Faculty m	embers					
Scientific rank	Special	lization	Requireme Private (Preparing the teaching staff		
	general	private		Academic	lecturer	
Assistant Professor	Mechanical Engineering	Refractories				
Assistant Professor	Mechanical Engineering	Fluids and refractories		\checkmark		
Assistant Professor	Mechanical Engineering	design				
Assistant Professor	Mechanical Engineering	Applied mechanics				
Assistant Professor	Mechanical Engineering	Tillage equipment				
Assistant Professor	Machine engineering Agricultural	Field capacity design				
lecturer	Mechanical Engineering	Applied mechanics				
lecturer	Mechanical Engineering	Applied mechanics				

		_	[]	<i>r</i>	1
lecturer	Master's	Manufacturing		\checkmark	
	degree in	systems			
	Manufacturing	engineering			
	Engineering				
lecturer	Master's	Industrial			
	degree in	engineering			
	Manufacturing				
	Engineering				
lecturer	Master's	Applied			
	degree in	mechanics			
	Mechanical				
	Engineering				
lecturer	Master's	Manufacturing			
	degree in	and industrial			
	Mechanical				
	Engineering				
lecturer	Master's	Applied			
	degree in	mechanics			
	Mechanical				
	Engineering				
lecturer	Master's	Production			
	degree in	and operations			
	industrial	-			
	management				
lecturer	Master's	Machines and			
	degree in	machines			
	agricultural				
	mechanization				
Assistant	Master's	Applied			
Teacher	degree in	mechanics			
	Mechanical				
	Engineering				
Assistant	Master of	Data theory			
Teacher	Mathematics				

Professional development

Orienting new faculty members

They are defined as members who are newly hired by the university and are within their first year of academic service. A faculty member in his second year is eligible to participate if he is nominated by the deanship.

Professional development for faculty members

The development of teaching staff is facilitated through their participation in teaching methods courses held at the Faculty Development Center, as well as through the organization of departmental seminars where each faculty member is tasked with preparing a seminar on a scientific topic. These seminars are presented in the presence of the department's teaching staff, followed by discussion and recording of necessary feedback, which helps refine the personality of the faculty member and assists in managing discussions, defending positions, and expressing opinions, thereby contributing to the enhancement of the faculty member's academic level and the development of their capabilities. Additionally, many departmental faculty members have participated in internal and external training courses in recent years, which have had a positive impact on increasing knowledge and skill development. Furthermore, most departmental faculty members participate annually in numerous scientific conferences organized by Iraqi universities either as researchers or participants.

- 1. Identifying the department's needs for faculty members and their specialties based on its vision and goals.
- 2. Having plans for training programs to develop the skills and capabilities of faculty members.
- 3. Having databases containing qualifications and experiences of faculty members.
- 4. Faculty members contributing to areas that serve the department within their specialization.
- 5. Setting faculty member quotas in the department according to regulations.
- 6. The department providing research requirements for faculty members.
- 7. Providing appropriate conditions, administrative requirements, and educational resources within the department.
- 8. Providing clear and precise instructions including the use of modern teaching and learning methods within the department.
- 9. Providing facilities for faculty members to participate in conferences, development courses, and training workshops.

12. Acceptance criterion

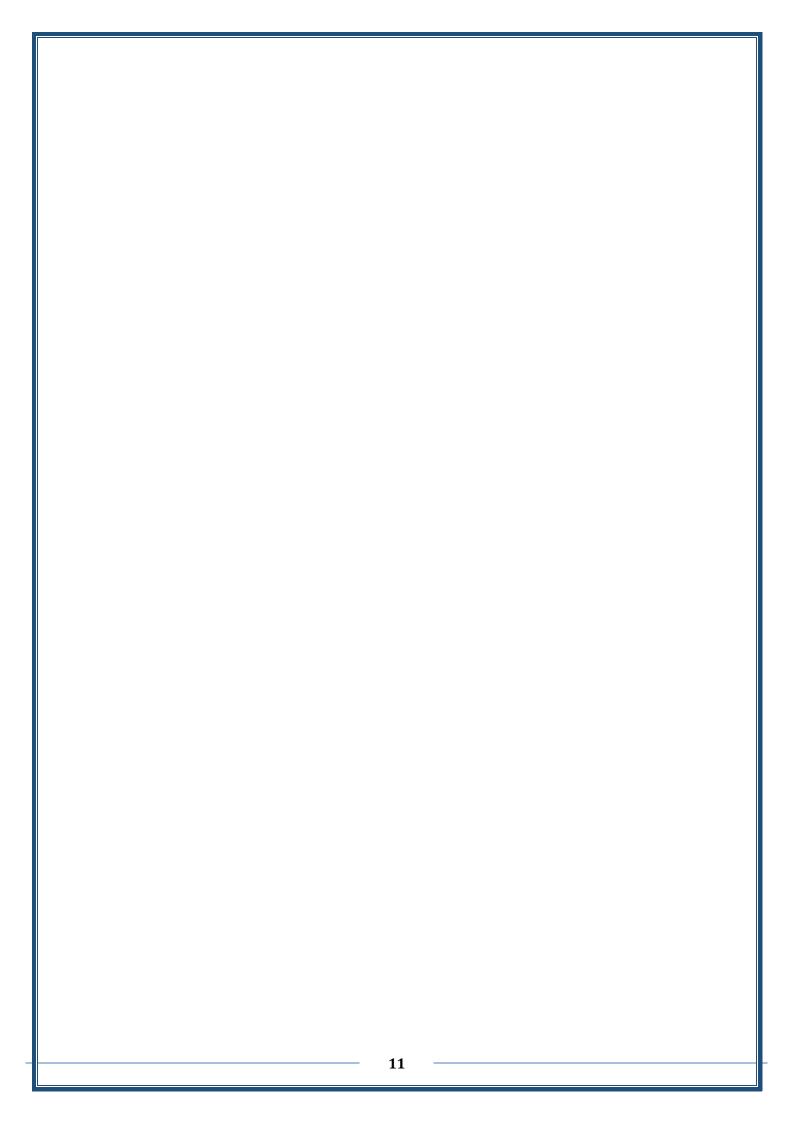
Inputs:

- 1. Graduates of the scientific branch of preparatory school.
- 2. The top five students from graduates of vocational preparatory schools in the machinery, automotive, and mechanical branches.
- 3. The top 10% and distinguished employees from governmental departments who are graduates of the Technical Education Authority in the following specialties:
 - Mechanical Department: General Mechanics, Production and Metals, and Mechanical Operation and Maintenance.
 - Machinery and Equipment Department, Automotive Branch.
 - Machinery and Equipment Department, Agricultural Branch.
- 4. The top ten and distinguished employees from governmental departments who are graduates of the Oil Training Institute/Automotive and Heavy Equipment Department.

Admission System: Students are admitted through central admission at the Ministry of Higher Education and Scientific Research in two stages as follows:

- 1. The first stage accepts graduates of the scientific branch of preparatory school, as well as the top graduates of vocational education in specialties eligible for acceptance.
- 2. The second stage accepts:
 - The top ten graduates from specified technical institutes mentioned in the inputs.
 - Distinguished individuals in the field of work from specified specialties mentioned in the inputs.
 - The top ten graduates from the Oil Training Institute in specialties specified in the inputs.

13.The Most Important Sources of Information About the Program


The official website of the college

www.tcm.edu.iq

Al-Musayyib Technical College / Babil / Al-Mashroo

14. Program development plan

The Department of Machinery and Equipment Technology Engineering works to develop the student's practical skills and increase his confidence in his scientific capabilities. The curricula are updated by 20% annually by the subject teacher, and periodic updating follows the Deans' Committee.

rogram skil	ls chart			T.a					und f						
			1		rning		omes i			om u		ogran	1		
Year/level	Course	Course Name	Basic	Kno	owledg	ge	-	skil	ls		-	valu	ies	-	
2023-2220	Code		Or optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4
The first stage	METE1M2	ENGINEERNG MATERIALS	Specialization		*								*		
C	METE1E3	ENGINEERING MECHANICS	Specialization		*							*	*	*	
The	METE2T1	THERMODYNAMIC	Specialization		*							*			
second stage	METE2S2	STRENGTH OF MATERIALS	Specialization		*		*	*				*	*	*	*
third stage	METE3T2	THEORY OF MACH. & VIBRATIONS	Specialization	*	*	*	*	*	*	*		*	*	*	*
	METE3M3	MACHINE DESIGN	Specialization	*	*	*	*	*	*	*		*	*	*	*
The fourth	METE4A1	MACH. & EQUIP.	Specialization	*	*		*	*	*	*		*	*	*	*
stage	METE4R6	RESEARCH PROGECT	Specialization	*	*	*	*	*	*	*		*	*	*	*

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

1. Course Name:	
-----------------	--

ENGINEERNG MATERIALS

2. Course Code:

METE1M2

3. Semester / Year:

Year

4. Description Preparation Date:

Theoretical and practical lectures and field trips

- 5. Available Attendance Forms:
 - Daily
- 6. Number of Credit Hours (Total) / Number of Units (Total)4 hours in week / 6

7. Course administrator's name (mention all, if more than one name) Name: Shaymaa Abdul Khader

Email: com.ka.shymaa@atu.edu.iq

8.	Course Objectives
----	--------------------------

Course Objectives	 Introducing the student to the properties and compositions
	metallic materials added to the properties of these materials
	how to improve the properties by conducting heat treatments
	other strengthening methods.
	 Enable the student to measure the mechanical properties of met
	and how to improve these properties by conducting ther
	treatments and the effect of these treatments on microsco
	structures.

9. Teaching and Learning Strategies

StrategyThe primary strategy that will be adopted in delivering this module is to encourage
students' participation in the exercises, while at the same time refining and expanding
their critical thinking skills. This will be achieved through classes, interactive tutorials

Week	Hours	Required Learning	Unit or	Learning	Evaluation
		Outcomes	subject	method	method
			name		
Week 1-4	16	REVIEW OF MECHANICAL PROPERITIES: HARDNESS – TENSILE – CREEP – FATIQUE.		Giving lectures	Assignments oral exams discussions, direct questions, and shor quizzes
Week 5-7	12	REVIEW OF THERMALEQUILIBRIUMDIAGRAMSINTERMEDIATECOMPOUNDSEUTECTOID REACTION- EUTECTIC REACTION.		Giving lectures	Assignments oral exams discussions, direct questions, and shor quizzes
Week 8-9	8	THERMAL EQUILIBRIUM DIAGRAMS FOR FE .C ALLOYS SYSTEM.		Giving lectures	Assignments oral exams discussions, direct questions, and shor quizzes
Week 10	4	THE EFFECT OF % CARBON ON THE MECHANICAL PROPERITIES AND CARBON STEEL PHASES.		Giving lectures	Assignments oral exams discussions, direct questions, and show quizzes
Week 11	4	CLASSIFICATION OF CARBON STEEL ALLOYS.		Giving lectures	Assignments oral exams discussions, direct questions, and show quizzes
Week 12-13	8	ALLOY STEELS – HOW THE EFFECTS OF ADDING ALLOYING ELEMENTS.		Giving lectures	Assignments oral exams discussions, direct questions, and show quizzes
Week 14-15	8	CAST IRON – PRODUCTION – TYPES.		Giving lectures	Assignments oral exams discussions, direct questions, and sho quizzes
Week 16-18	12	HEAT TREATMENTS FOR STEEL (ANNEALING – NORMALIZING –		Giving lectures	Assignments oral exams discussions, direct questions,

			HAR CUR		NG)	, T.T	.т.						and shor quizzes
Week 19-20	8		TRA ISOT TRA (I.T)	FENII NSFO HERM NSFO LING	RMA' MAL RMA' CON'		– US			I	Givin ectur		Assignments oral exams discussions, direct questions, and show quizzes
Week 21-22	8			MENT		LLOYIN N T.T				I	Givin ectur	_	Assignments oral exami- discussions direct questions, and sho quizzes
Week 23	4		TEM	PERII	NG.					Giving lectures			Assignments oral exami- discussions direct questions, and sho quizzes
Week 24-25	8		PRO ALL TRE THE EQU	ATME RMAI ILIBR	TIES – ENTS - –					Giving lectures			Assignments oral exami- discussions direct questions, and sho quizzes
Week 26-27	8		DIAGRAM. CU - EXTRACTION - PROPERITIES - CU ALLOYS - HEAT TREATMENTS - CU - ZN THERMAL EQUILIBRIUM DIAGRAM.							Giving lectures			Assignments oral exami- discussions direct questions, and sho quizzes
Week 28-29	8		WHI COM USES	POSI	MET TION		ND			Giving lectures			Assignments oral exam- discussions direct questions, and sho quizzes
Week 30	4		MG A	ALLO	YS.					I	Givi ectur		short quizze
11. Cours	se Ev	/alua	ition										
The Course	Frist	t Cou					year wor					am	Total assessment
	Th.	Pr.	Sum	Th.	Pr.	Sum	Ex.			Th.	Pr.	Sum	
Theoretical and practical	10	10	20	20	10	20	5	5	50	40	10	50	100

12. Learning and Teaching Resources	
Required textbooks (curricular books, if any)	
Main references (sources)	 (Engineering metallurgy, part 1) Higgins, Raymond AEngineering Metallurgy - Applied Physical Metallurgy-Elsevier (1993). (Engineering metallurgy, part 2) Higgins, Raymond AEngineering Metallurgy - Applied Physical Metallurgy-Elsevier (1993).
Recommended books and references (scientific journals, reports)	 The Science and Engineering of Materials, Seventh Edition, Donald R. Ask eland, University of Missouri—Rolla, Emeritus, Wendelin J. Wright, Becknell Universe, 2016. Materials Science and Engineering An Introduction, William D. Callister, Jr. and
Electronic References, Websites	David G. Rethwisch, 2010. <u>http://www.sanfoundery.com/engineering-</u> materials-metallurgy-questions-answers- <u>hardness-tests-metals</u>