Ministry of Higher Education and Scientific Research Scientific Supervision and Evaluation Authority Department of Quality Assurance and Academic Accreditation Accreditation Department

2024-2025

Academic Program Description

University Name: Al-Furat Al-Awsat Technical University College/Institute: Technical Collage of Al-Mussaib Scientific Department: Department of Machinery and Equipment Engineering Technology Academic or Professional Program Name: Bachelor's Degree Final Degree Name: Bachelor of Science in Building and Construction Engineering Technology Study System: Annual Description Preparation Date: File Filling Date: 19/9/2024

Signature:

Department Head Name:

ter

Signature:

Scientific Assistant Name:

3//2024

Ass. Prof. Dr. Hani Mizhir Magid Prof. I Date:24 9/2024

Prof. Dr. Nabil Hamid Abdul Majeed

Dean's Approval

File Verified By: Quality Assurance and University Performance Department Quality Assurance and University Performance Department Director Name: Dr. Haider Rahman Dawood Date: 22/9/2024 Signature:

Benty Lido 15.

1. Program Vision

Keeping pace with the latest scientific developments in the undergraduate and graduate education program, guiding scientific research, developing it, and utilizing applicable research capabilities to serve the machinery and equipment sector.

2. Program Mission

Within the framework of the mission of Al-Musayyib Technical College, the department is committed to preparing engineering technicians and researchers capable of contributing to the development of the machinery and equipment sector.

3. Program Objectives

To prepare technical engineering personnel with qualifications in machinery and equipment engineering.

To develop scientific staff capable of keeping up with scientific advancements in mechanical engineering/machinery and equipment engineering.

To learn how to maintain and repair machinery and equipment.

To learn the design of various types of machinery and equipment.

To learn practical applications through laboratory experiments.

To gain practical experience through field observation to enhance theoretical understanding.

4. Program Accreditation

None

5. Other External Influences

None

6. Program S	Structure			
Program	Course	Credit Hours	Percentage	Notes *
Structure	Count			
	44	195		
Institutional				
Requirements				
College	44	195		
Requirements				
Department	44	195		
Requirements				
Summer		Two		For Second
Training		Months		and Third
Notes				Bologna
				System -
				Semester and
				Final

* May include whether the course is mandatory or elective

7. Program description									
Educational level	Course or course code	Name of the course or course	Credit hours						
	ATU21011	Workshops (I)		240					
	ATU21012	Engineering materials	240	120					
	ATU21013	Mathematics (I)	240						
	ATU21014	Engineering Mechanics(I)	240	120					
	ATU21015	Engineering Drawing		240					
The first	ATU12	English Language(I)	60						
The first	ATU21021	Workshops (II)		240					
	ATU21022	Computer Aided Drafting (CAD)	60	240					
	ATU21023	Mathematics (II)	240						
	ATU21024	Engineering Mechanics (II)	180	120					
	ATU21025	Computer Programming	60	180					
	ATU11	Human Rights and Democracy	60						
	ATU13	Arabic Language	60						
	AMEE 204	Mechanical Machine	120	120					
	AMEE 205	Strength of Materials	120	120					
	AMEE 207	Thermodynamics	120	120					
	AMEE 208	Fluid Mechanics	120	120					
The second	AMEE 212	Engineering Drawing	180						
	AMEE 213	Manufacturing process	120	180					
	MUTC 201	Mathematics/2	180						
	ATU 202	Computer Principles 2	60	120					
	ATU 201	English Language 2	60						
	MUTC202	Summer Training 1							
	MUTC301	Numerical and Analysis Engineering	60	120					
	AMEE 305	Theory of Machines	120	120					
	AMEE 315	Machine Design 1	60	180					
	AMEE 308	Internal Combustion Engines	120	120					
Third	AMEE 307	Heat Transfer	120	120					
Tmra	AMEE 308	Hydraulic Machines	120	60					
	MUTC401	Industrial Management	120	60					
	AMEE 304	Machines & Equipment Technical	120	60					
	MUTC303	Summer Training 2							
	ATU 302	Computer Principles 3	60	120					
	ATU 301	English Language 3	60						
	AMEE410	Control and Measurements	120	120					
	AMEE408	Power Plants	120	120					
	AMEE404	Machine Design2	120	180					
	AMEE403	Machines & Equipment Repair Maintenance	60	180					
	AMEE406	Mechanical Vibrations	120	120					
Fourth	AMEE411	Graduation Project		360					
i vui tii	AMEE405	Pumps Techniques	60	120					
	AMEE412	Machines Economics	120						
	ATU 402	Computer Principles 4	60	120					
	ATU 401	English Language 4	60						

8. Expected learning outcomes of the p	program
Knowledge	
 Introducing the student to the concepts and principles of machinery and equipment engineering. 2- Introducing the student to the types of engines. Introducing the student to the types of loads, forces, and stresses. Teaching the student engineering designs. Teaching the student how to conduct scientific research. 	- Make the student aware of the importance of engineering machinery and equipment techniques in practical life
Skills	
 Program Specific Skill Objectives: Training the student in various welding techniques. Training the student in metal turning and milling. Training the student in metal forming and casting. 	- General skills and qualifying the student to maintain engines and machines
 3- Learning Outcomes: 1- Empowering the student to acquire practical skills. 2- Empowering the student with theoretical design and its application in graduation projects. Values 	 Knowledge of the foundations and rules of designs. Explaining the principles of heat exchanges. Explaining the principles of the question and the forces affecting the pressures generated from it.
 3. Learning Outcomes Analyzing stresses generated in beams from bending and shear. Understanding engineering analysis techniques. Empowering the student to work on electronic control and its integration with mechanical systems. 	 The student can analyze equations. He is able to analyze mathematical operations and transform them into practical applications.

9. Teaching and learning strategies

- 1- Explanation and clarification of lectures.
- 2- Scientific seminars in the specialty.
- 3- Summer training.
- 4- Scientific trips and visits to practical sites related to the specialty.

10. Evaluation methods

- 1- Practical tests
- 2- Theoretical tests
- 3- Reports
- 4- Class activities
- 5- Association volunteer work

11. The	e teaching staff												
Faculty m	Faculty members												
Scientifi c rank	Special	lization	Requirements/skill s Private (if any)	Preparing the teaching staff									
	general	private		Academi c	lecture r								
Assistant Professor	Mechanical Engineering	Refractories											
Assistant Professor	Mechanical Engineering	Fluids and refractories		\checkmark									
Assistant Professor	Mechanical Engineering	design		\checkmark									
Assistant Professor	Mechanical Engineering	Applied mechanics											
Assistant Professor	Mechanical Engineering	Tillage equipment		\checkmark									
Assistant Professor	Machine engineering Agricultural	Field capacity design		\checkmark									
lecturer	Mechanical Engineering	Applied mechanics											
lecturer	Mechanical Engineering	Applied mechanics		\checkmark									

lecturer	Master's	Manufacturin		
	degree in	g systems		
	Manufacturin	engineering		
	g Engineering			
lecturer	Master's	Industrial		
	degree in	engineering		
	Manufacturin	0 0		
	g Engineering			
lecturer	Master's	Applied		
	degree in	mechanics		
	Mechanical			
	Engineering			
lecturer	Master's	Manufacturin		
	degree in	g and		
	Mechanical	industrial		
	Engineering			
lecturer	Master's	Applied		
	degree in	mechanics		
	Mechanical			
	Engineering			
lecturer	Master's	Production		
	degree in	and operations		
	industrial			
	management			
lecturer	Master's	Machines and		
	degree in	machines		
	agricultural			
	mechanization			
Assistant	Master's	Applied		
Teacher	degree in	mechanics		
	Mechanical			
	Engineering			
Assistant	Master of	Data theory		
Teacher	Mathematics			

Professional development

Orienting new faculty members

They are defined as members who are newly hired by the university and are within their first year of academic service. A faculty member in his second year is eligible to participate if he is nominated by the deanship.

Professional development for faculty members

The development of teaching staff is facilitated through their participation in teaching methods courses held at the Faculty Development Center, as well as through the organization of departmental seminars where each faculty member is tasked with preparing a seminar on a scientific topic. These seminars are presented in the presence of the department's teaching staff, followed by discussion and recording of necessary feedback, which helps refine the personality of the faculty member and assists in managing discussions, defending positions, and expressing opinions, thereby contributing to the enhancement of the faculty member's academic level and the development of their capabilities. Additionally, many departmental faculty members have participated in internal and external training courses in recent years, which have had a positive impact on increasing knowledge and skill development. Furthermore, most departmental faculty members participate annually in numerous scientific conferences organized by Iraqi universities either as researchers or participants.

- 1. Identifying the department's needs for faculty members and their specialties based on its vision and goals.
- 2. Having plans for training programs to develop the skills and capabilities of faculty members.
- 3. Having databases containing qualifications and experiences of faculty members.
- 4. Faculty members contributing to areas that serve the department within their specialization.
- 5. Setting faculty member quotas in the department according to regulations.
- 6. The department providing research requirements for faculty members.
- 7. Providing appropriate conditions, administrative requirements, and educational resources within the department.
- 8. Providing clear and precise instructions including the use of modern teaching and learning methods within the department.
- 9. Providing facilities for faculty members to participate in conferences, development courses, and training workshops.

12. Acceptance criterion

Inputs:

- 1. Graduates of the scientific branch of preparatory school.
- 2. The top five students from graduates of vocational preparatory schools in the machinery, automotive, and mechanical branches.

8

- 3. The top 20% and distinguished employees from governmental departments who are graduates of the Technical Education Authority in the following specialties:
 - Mechanical Department: General Mechanics, Production and Metals, and Mechanical Operation and Maintenance.
 - Machinery and Equipment Department, Automotive Branch.
 - Machinery and Equipment Department, Agricultural Branch.
- 4. The top ten and distinguished employees from governmental departments who are graduates of the Oil Training Institute/Automotive and Heavy Equipment Department.

Admission System: Students are admitted through central admission at the Ministry of Higher Education and Scientific Research in two stages as follows:

- 1. The first stage accepts graduates of the scientific branch of preparatory school, as well as the top graduates of vocational education in specialties eligible for acceptance.
- 2. The second stage accepts:
 - The top ten graduates from specified technical institutes mentioned in the inputs.
 - Distinguished individuals in the field of work from specified specialties mentioned in the inputs.
 - The top ten graduates from the Oil Training Institute in specialties specified in the inputs.

13. The Most Important Sources of Information About the Program

The official website of the college

www.tcm.edu.iq

Al-Musayyib Technical College / Babil / Al-Mashroo

14. Program development plan

The Department of Machinery and Equipment Technology Engineering works to develop the student's practical skills and increase his confidence in his scientific capabilities. The curricula are updated by 20% annually by the subject teacher, and periodic updating follows the Deans' Committee.

	Learning outcomes required from the program														
Year/level	Course Code	Course Name	Basic	Kno	wledg	ge		skil	ls			valu	alues		
2023-2024			Or optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4
The first stage	ATU21012	ENGINEERNG MATERIALS	Specialization		*								*		
	ATU21014	ENGINEERING MECHANICS	Specialization		*							*	*	*	
The	AMEE 207	THERMODYNAMIC	Specialization		*							*			
second stage	AMEE 205	STRENGTH OF MATERIALS	Specialization		*		*	*				*	*	*	*
third stage	AMEE 305	THEORY OF MACH. & VIBRATIONS	Specialization	*	*	*	*	*	*	*		*	*	*	*
	AMEE 315	MACHINE DESIGN	Specialization	*	*	*	*	*	*	*		*	*	*	*
The fourth	AMEE403	MACH. & EQUIP.	Specialization	*	*		*	*	*	*		*	*	*	*
stage	AMEE411	RESEARCH PROGECT	Specialization	*	*	*	*	*	*	*		*	*	*	*

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

Course Description Form

1. Course Name:
ENGINEERNG MATERIALS

2. Course Code:

ATU21012

3. Semester / Year:

Semester

4. Description Preparation Date:

Theoretical and practical lectures and field trips

5. Available Attendance Forms:

Daily

6. Number of Credit Hours (Total) / Number of Units (Total)

6 hours in week

7. Course administrator's name (mention all, if more than one name) Name: Shaymaa Abdul Khader

Email: com.ka.shymaa@atu.edu.iq

8. Course Objectives

• Introducing the student to the properties and compositions
metallic materials added to the properties of these materials
how to improve the properties by conducting heat treatments
other strengthening methods.
• Enable the student to measure the mechanical properties of me
and how to improve these properties by conducting ther
treatments and the effect of these treatments on microsco
structures.

9. Teaching and Learning Strategies

Strategy	The primary strategy that will be adopted in delivering this module is to encourage	
	students' participation in the exercises, while at the same time refining and expanding	
	their critical thinking skills. This will be achieved through classes, interactive tutorials	
		l

10. Cours	e Structu	ıre										
Week	Hours	Hours Required Learning Unit or Learning										
		Outcomes	subject	method	method							
			name									
Week 1-4	16	REVIEW OF MECHANICAL PROPERITIES: HARDNESS – TENSILE – CREEP – FATIQUE.		Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes							
Week 5-7	12	REVIEW OF THERMAL EQUILIBRIUM DIAGRAMSDIAGRAMSINTERMEDIATE COMPOUNDSEUTECTOID REACTION - EUTECTIC REACTION.		Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes							
Week 8-9	8	THERMAL EQUILIBRIUM DIAGRAMS FOR FE .C ALLOYS SYSTEM.		Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes							
Week 10	4	THE EFFECTOF%CARBONONTHEMECHANICALPROPERITIESANDCARBONSTEELPHASES.		Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes							
Week 11	4	CLASSIFICATION OF CARBON STEEL ALLOYS.		Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes							
Week 12-13	8	ALLOY STEELS – HOW THE EFFECTS OF ADDING ALLOYING ELEMENTS.		Giving lectures	Assignments, oral exams discussions, direct questions, and short quizzes							

Week 14-15	8	CAST IRON – PRODUCTION – TYPES.	Giving lectures	Assignments, oral exams, discussions, direct questions, and short quizzes							
11. Course Evaluation											

The Course	Frist	rist Course		Second Course		5		Annual quest	Final Exam		am	Total assessment	
	Th.	Pr.	Sum	Th.	Pr.	Sum	Ex.	Tet.		Th.	Pr.	Sum	
Theoretical and practical	10	10	20	20	10	20	5	5	50	40	10	50	100

12. Learning and Teaching Resources	
Required textbooks (curricular books, if any)	
Main references (sources)	 (Engineering metallurgy, part 1) Higgins, Raymond AEngineering Metallurgy - Applied Physical Metallurgy-Elsevier (1993). (Engineering metallurgy, part 2) Higgins, Raymond AEngineering Metallurgy - Applied Physical Metallurgy-Elsevier (1993).
Recommended books and references (scientific journals, reports)	 The Science and Engineering of Materials, Seventh Edition, Donald R. Ask eland, University of Missouri—Rolla, Emeritus, Wendelin J. Wright, Becknell Universe, 2016. Materials Science and Engineering An Introduction, William D. Callister, Jr. and David G. Rethwisch, 2010.
Electronic References, Websites	http://www.sanfoundery.com/engineering- materials-metallurgy-questions-answers- hardness-tests-metals