Ministry of Higher Education and Scientific Research Scientific supervision and evaluation institution Department of Quality Assurance and Academic Accreditation

Accreditation Department

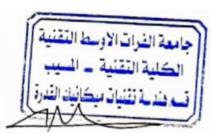
Description of the academic program of the Power Mechanical Technology Engineering Department for the academic year 2024-2025

University name: Al-Furat Al-Awsat Technical University

College/Institute: Technical College - Mussiab

Scientific Department: Department of Power Mechanical Technology

Engineering


Name of the academic or professional program: Bachelor's degree Name of final degree: Bachelor of Mechanical Power Technology

Engineering

Academic system: Annual

Description preparation date: 29/09/2024

Date of filling the file: 31/09/2024

The signature:

Name of scientific assistant Dean:

Prof. Dr. Nabil Hamid Abdel Majeed

Date / /2024

The signature:

Name of Department Head:

Assist. Prof. Dr. Malik Nama Hawass

Date: / /2024

Check the file by:

Division of Quality Assurance and University Performance

Name of the Director of the Quality Assurance and University Performance Division:

Dr. Haider Rahman Daoud

Date: / /2024

The signature:

عادية المعرفة والاداء المعرفة والاداء المعرفة والاداء المعرفة والاداء المعرفة المعرفة المعرفة والاداء والمعرفة والمعرفة

Authentication of the Dean

10/

1-Program vision

Keeping pace with modern scientific developments in the education program for undergraduate and postgraduate levels in the future, directing and developing scientific research, and employing applicable research energies in the fields of .power and energy production.

1. Program message

Within the framework of the mission of Al-Mussaib Technical College, the department is committed to preparing technical engineers and researchers capable of contributing to the development of the power sector and the fields of energy production in its various forms.

1. Program objectives

- 1- Preparing engineering technical staff who hold qualifications in power mechanical engineering technology
- 2- Preparing scientific staff capable of keeping pace with scientific development in mechanical engineering/power mechanical technology engineering
- 3- Learn how to maintain turbine machines, generating and cooling devices
- 4- Design of equipment and machines
- 5- Learn practical applications through laboratory experiments
- 6- Gaining practical experience through field observation to enhance the theoretical aspect.

1. Programmatic accreditation

Does the program have program accreditation? no

1. Other external influences

Is there a sponsor for the program? no

1. Program structure

* comments	percentage	Study unit	Number of	Program structure
			courses	
		195	43	Institution requirements
		185	38	College requirements
		185	38	Department
				requirements
For the		2 months		Work placement
second and				(summer training)
third stages				
				others

1.	Progra	m description		
Credit h	ours	Name of the course	course code	Year/level
-	60	Engineering Materials Tech.	PMTE111	The first
180	-	Engineering Drawing	PMTE112	
-	120	Engineering Mechanics	PMTE113	
-	90	Mathematics1	PMTE114	
60	30	Electrical technology	PMTE115	
240	-	Workshops	PMTE116	
60	30	Computer Applications 1	PMTE117	
-	60	Human Rights and Democracy	PMTE118	
-	30	English 1	PMTE119	
60	60	Strength of materials	PMTE211	The
60	60	Fluid mechanics	PMTE212	second
60	60	Thermodynamics	PMTE213	
60	60	Metallurgy	PMTE214	
_	90	Mathematics2	PMTE215	
180	-	Mechanical Drawing	PMTE216	
60	30	Computer Applications 2	PMTE217	
-	-	Training	PMTE218	
-	30	English 2	PMTE219	
60	60	Electric motors	PMTE220	
60	60	Pumps Technology	PMTE311	The third
60	60	Hydraulics	PMTE312	

60 90 60 60 - 60 -	60 - 60 60 60 90 30 -	Gas dynamics Turbo machinery Operation & Maintenance (1) Internal combustion engines Heat transfer Theory of Machines Engineering &Numerical Analysis Computer Applications 3 Training	PMTI PMTI PMTI PMTI PMTI PMTI	E314 E315 E316 E317 E318	
60	60	Theory of Machines	PMT	E317	
-	90	Engineering &Numerical Analysis	PMT	E318	
60	30	Computer Applications 3	PMT	E319	
-	-	Training	PMT	E320	
-	30	English 3	PMT	E321	
60	60	Power plants	PMTE	411	The
-	90	Machine design	PMTE	412	fourth
- 60	90 60	Machine design Theory of Vibration	PMTE		fourth
- 60 60				413	fourth
	60	Theory of Vibration	PMTE	413 415	fourth
60	60 60	Theory of Vibration Manufacturing Processes	PMTE	413 415 416	fourth
60 60	60 60	Theory of Vibration Manufacturing Processes Refrigeration and air conditioning	PMTE	413 415 416 E417	fourth
60 60 90	60 60 60 -	Theory of Vibration Manufacturing Processes Refrigeration and air conditioning Project	PMTEA PMTEA PMTEA	413 415 416 417 5418	fourth
60 60 90	60 60 60 -	Theory of Vibration Manufacturing Processes Refrigeration and air conditioning Project Measurement & Control processes	PMTEA PMTEA PMTEA PMTEA	413 415 416 417 418 419	fourth

1. Expected learning outcomes of the	e program
Knowledge	
The student's awareness of the importance of power .mechanical engineering techniques in practical life	1 - Preparing qualified technical engineering personnel to design, inspect, install, operate and maintain various types of turbine machines and their accessories. 2- Teaching students what is meant by mechanical engineering and creating a generation of engineers in the specialty of power mechanics. -3Spreading knowledge awareness related to mechanical engineering/power mechanical engineering techniques.
Skills	
General skills and qualifying the student to maintain and rehabilitate power stations	1- He has the ability to work in electrical power production units and refrigeration and air conditioning systems. -2 Proficiency in working in the public and private sectors in the specialty of mechanical engineering/power mechanical technology engineering.

Value	
Acquiring skills and experience in the field of mechanical engineering in general and the energy sector in particular.	1- Observation, perception, analysis and interpretation 2- The ability to use the acquired knowledge in designing machines, turbine machines, and cooling devices 3 Conclusion and evaluation in solving engineering problems and how to develop engineering devices and equipment 4 The ability to evaluate numerical data and apply analytical methods for the purposes of mechanical design, manufacturing methods, and product control.

1-Teaching and learning strategies

- 1- The lecture
- 2- Laboratory
- 3- Seminars and summer training
- 4- Scientific trips and seminars
- 5- Scientific books
- 6- Graduation projects

1. Evaluation methods

Conducting tests (daily, quarterly, final(Annual Evaluation Homeworks Quizzes.

2. The teaching staff

Faculty members

Number o	of the teaching staff	Special requirements/skills (if any(field	Academic position
lecturer	Permanent		specialization	General	
	staff			specialization	
	V		Power/ thermal engineering	Mechanical Engineering	Prof
	$\sqrt{}$		Applied	Mechanical	Prof.

	mechanics	Engineering	
√	Design and manufactu		Assist. Prof.
V	App mecha	olied Mechanical enics Engineering	Assist. Prof.
V		wer/ Mechanical rmal Engineering rring	Assist. Prof.
√		wer/ Mechanical rmal Engineering rring	Assist. Prof.
√	App mecha	olied Mechanical nics Engineering	lecturer
√		wer/ Mechanical rmal Engineering rring	lecturer
√		wer/ in MSc rmal Mechanical rring Engineering	lecturer
		wer/ in MSc rmal Mechanical ering Engineering	Assist. lecturer

Professional development

Orienting new faculty members

They are defined as members who are newly hired by the university and are within their first year of academic service. A faculty member in his second year is eligible to participate if he is nominated by the deanship.

Professional development for faculty members

The ability of teachers is developed by involving them in teaching methods courses held at the Faculty Development Center, as well as by holding seminars at the department level, where each teacher is assigned to prepare a seminar on one of the scientific topics, and it is delivered in the presence of the teaching staff in the department. The topic is discussed and notes are recorded. Necessary, as this is useful in refining the teacher's personality and helping him in managing discussion, defense, and expressing opinion, which would help raise the academic level of the teacher and develop his capabilities. Also, in recent years, many of the department's teachers have participated in courses inside and outside the country that have had a

positive impact in increasing knowledge and developing skills. Most of the department's teachers also participate annually in many scientific conferences held by Iraqi universities as researchers or as participants.

3. Acceptance criterion

Inputs:-

- 1. Graduates of preparatory school, scientific branch.
- 2. The top five students are graduates of vocational training/mechanics branch.
- 3. The top ten students who are graduates of technical institutes and distinguished state employees are graduates of the Technical Education Authority for the following specializations:
- Machinery and Equipment Department Pump Operation Branch.
- Machinery and Equipment Department Automotive Branch.
- Mechanics Department Production Branch.
- Mechanics Department Power or Capacity
- 4. The top ten distinguished employees of state departments are graduates of the Petroleum Training Institute for the following specializations:
- Mechanics Department Pumps and Turbine Branch.
- Mechanics Department Automotive and Heavy Equipment Branch.

Admission system: -

Students are accepted through central admission at the Ministry of Higher Education and Scientific Research in two stages, as follows:

- 1. The first grade includes graduates of preparatory school in the scientific stream, as well as the top graduates of vocational education in the specializations that can be accepted into the specialization.
- 2. The second grade is accepted:
- The top ten graduates of the technical institutes specified in the specialization entries.
- ② Distinguished people in the field of work in the specializations specified in the entries.
- The top ten graduates of the institute for the specializations specified in the specialization entries, including the Department of Power/Power Mechanics

3. The most important sources of information about the program

The official website of the college https://cms.atu.edu.iq

Mussaib Technical College/Babylon

3. Program development plan

The Mechanical Technology Engineering Department works to develop the student's practical skills and increase his confidence in his scientific capabilities. The curricula are updated by 20% annually by the subject teacher, and periodic updating follows the Deans' Committee.

				مهارات البرنامج	مخطط												
	ter							R	Requir	ed pro	gram	Learr	ning or	utcom	es		
Level	Semester	.No	Module Code	Module Name in English	Module Type		Knov	vledge			Sk	ills			Etl	nics	
	Se					A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	C3	C4
		1	PME111	English for Academic (Level 1)	S	*				*	*				*		
		2	PME112	Computer Principals	В	*				*				*			
	One	3	PME113	Mathematics -I	В	*				*							*
	One	4	PME114	Workshop	C		*			*					*		
		5	PME115	Fundamentals of Engineering Mechanics-Statics	C	*				*					*		
st ₁		6	PME116	Engineering Drawing (Fundamentals)	S	*						*			*		
1		1	PME121	Human Right and Democracy	В		*			*							
		2	PME122	Mathematics -II	В	*				*							*
	Two	3	PME123	Engineering Materials	S												
	1 WO	4	PME124	Fundamentals of Engineering Mechanics-Dynamics	C	*				*					*		
		5	PME125	Engineering Drawing (CAD Drawing)	S	*						*			*		
		6	PME126	Fundemantals of Elictricity	S	*				*	*				*		
		1	PME211	Fluid Mechanics -static	C	*					*				*		
		2	PME212	Electrical Engine	S	*				*	*				*		
	Three	3	PME213	Mechanical Engineering Drawing	S	*						*			*		
	Inree	4	PME214	Fundamentals of Thermodynamics	C	*				*				*			
		5	PME215	English for Academic (Level 2)	S	*				*	*				*		
nd2		6	PME216	Mathematics- III	В	*				*							*
2		1	PME221	Fluid Mechanics-Dynamics	C	*					*				*		
		2	PME222	Metallurgy	S	*					*				*		
	E	3	PME223	Mathematics- IV	В	*				*							*
	Four	4	PME224	Strength of Materials	S	*				*						*	
		5	PME225	Programming (Mat Lab)	S	*						*			*		
		6	PME226	Thermodynamic - Applications	C	*				*				*			

		1	PME311	Hydraulics	С	*	*		*					*			
Ī		2	PME312	Internal Combustion Engine	С	*	*		*					*			
Ī	E	3	PME313	Analyses Engineering	S	*					*				*		
ĺ	Five	4	PME314	Gas Dynamics	С	*	*		*					*			
ĺ		5	PME315	Heat Transfer (conduction)	С	*	*		*					*			
rd3		6	PME316	English for Academic (Level 3)	S	*				*	*				*		
143		1	PME321	pumps Technology	С	*	*		*					*			
Ī		2	PME322	Turbo-Machinery Operation and Maintenance	С	*	*		*					*			
Ī	a.	3	PME323	(Radiation & Heat Transfer (Convection	С	*	*		*					*			
Ī	Six	4	PME324	(D Auto CAD-3) Programming	S	*						*			*		
Ī		5	PME325	Analyses Numerical	S	*					*				*		
ĺ		6	PME326	Theory of Machines	S			*		*			*				
	1 PME411 Steam Power Plants		C	*	*		*					*					
ĺ		2	PME412	Theory Vibration	S			*		*			*				
ĺ	Seven	3	PME413	Refrigeration and Air Conditioning	C	*	*		*					*			
	Seven	4	PME414	Manufacturing Processe	S	*				*				*			
		5	PME415	Programming (Solid Work)	S	*						*			*		
th ₄		6	PME416	Project	C	*	*	*	*	*	*	*	*	*	*	*	*
4		1	PME421	Machine Design	S			*		*			*				
Ī		2	PME422	Measuring and Control Devices	C	*				*				*			
Ī	TRI LLA	3	PME423	Hydraulic Power Plants	C	*	*		*					*			
Ī	Eight	4	PME424	the industrial engineering	S	*				*				*			
Ī		5	PME425	English for Academic (Level 4)	S	*				*	*				*		
Ī		6	PME426	Final Project	C	*	*	*	*	*	*	*	*	*	*	*	*

Course description form

1. Name of the course Pumps technology 1. 1. Course code **PMTE311** 2. Semester/year annual 2. The date this description was prepared 2024/2/25 2. Available forms of attendance Theoretical and practical lectures and scientific trips 2. Number of study hours (total)/number of units (total) 4 hours 2. Name of the course administrator (if more than one name is mentioned) Name: Lecturer Doaa Fadel Karim Email: Doaa.fadhli.tcm@atu.edu.iq 2. Course objectives •Introducing the student to hydraulic calculations for pumps and their types Objectives of the Classifying them and identifying the internal parts, the function of each part study subject and their relationship With the rest of the parts for turbine engines. •Studying the theory of centrifugation, on which the operation of pumps depends, and studying the properties of pumps Performance curves and their relationships. •Choose the type and specifications of pumps required for any situation. Identify the types of valves and their parts The interior and function of each valve and its uses. 2. Teaching and learning strategies The strategy 3. Course structure **Evaluation** Name of the unit or Required hours Learning the method method

Theoretical

Daily and

topic

Power shaft

learning

outcomes

week

2-1

8

monthly and practical bydraulia		I
monthly and practical hydraulic		
exams and lectures and calculations		
reports scientific		
films		
Daily and Theoretical Types of pumps	16	6-3
monthly and practical and ways to classify		
exams and lectures and them		
reports scientific		
films		
Daily and Theoretical Internal	20	11-7
monthly and practical components of a		
exams and lectures and centrifugal pump		
reports scientific		
films		
Daily and Theoretical Centrifugal	16	-12
monthly and practical pumps/theory and		15
exams and lectures and application		
reports scientific		
films		
Daily and Theoretical relationships and	12	-16
monthly and practical properties of		18
exams and lectures and centrifugal pumps		
reports scientific		
films		
Daily and Theoretical Performance	16	-19
monthly and practical curves/choosing		22
exams and lectures and the best operating		
reports scientific point		
films		
Daily and Theoretical Connect the pumps	4	23
monthly and practical in series and		
exams and lectures and parallel		
reports scientific		
films		
Daily and Theoretical Positive	8	-24
monthly and practical displacement		25
exams and lectures and pumps		
reports scientific		
films		
Daily and Theoretical Valves	12	-26
monthly and practical		28
exams and lectures and		
reports scientific		

	films			
Daily and	Theoretical	Cavitation in pumps	4	29
monthly	and practical			
exams and	lectures and			
reports	scientific			
	films			
Daily and	Theoretical	Methods for	4	30
monthly	and practical	choosing the		
exams and	lectures and	appropriate pump		
reports	scientific			
	films			

3. Course evaluation

Distribution of the grade out of 100 according to the tasks assigned to the student, such as daily preparation, daily, oral, monthly, written exams, reports, etc.

The final	Final exam		xam	Annual quest	year works		Second course			Fi	rst co	urse	Subject			
grade																
	Sum	Pra	Th		Report	Total	Sum	Pra	Th	Sum	Pra	Th				
100	50	10	40	50	5	5	20	10	10	20	10	10	Theory and			
													practical			

3. Learning and teaching resources (Required textbooks (methodology, if any Hydraulic S.C., Bhattacharya (Main references (sources machines, shri B.V. Gupta, Delhi, 1975. 1. John A. Roberson, Hydraulic Recommended supporting books and Engineering, Wily& John references (scientific journals, reports...) Sons, USA, 1998. 2. Jain V.K., Pumps Theory and Practice, Galgotia Booksource, New Delhi, 1987. http://www.tkne.net Electronic references, Internet sites https://www.youtube.com/education